Towards a bionic bat: A biomimetic investigation of active sensing, Doppler-shift estimation, and ear morphology design for mobile robots
نویسنده
چکیده
So-called CF-FM bats are highly mobile creatures who emit long calls in which much of the energy is concentrated in a single frequency. These bats face sensor interpretation problems very similar to those of mobile robots provided with ultrasonic sensors, while navigating in cluttered environments. This dissertation presents biologically inspired engineering on the use of narrowband Sonar in mobile robotics. It replicates, using robotics as a modelling medium, how CF-FM bats process and use the constant frequency part of their emitted call for several tasks, aiming to improve the design and use of narrowband ultrasonic sensors for mobile robot navigation. The experimental platform for the work is RoBat, the biomimetic sonarhead designed by Peremans and Hallam, mounted on a commercial mobile platform as part of the work reported in this dissertation. System integration, including signal processing capabilities inspired by the bat’s auditory system and closed loop control of both sonarhead and mobile base movements, was designed and implemented. The result is a versatile tool for studying the relationship between environmental features, their acoustic correlates and the cues computable from them, in the context of both static, and dynamic real-time closed loop, behaviour. Two models of the signal processing performed by the bat’s cochlea were implemented, based on sets of bandpass filters followed by full-wave rectification and low-pass filtering. One filterbank uses Butterworth filters whose centre frequencies vary linearly across the set. The alternative filterbank uses gammatone filters, with centre frequencies varying non-linearly across the set. Two methods of estimating Doppler-shift from the return echoes after cochlear signal processing were implemented. The first was a simple energy-weighted average of filter centre frequencies. The second was a novel neural network-based technique. Each method was tested with each of the cochlear models, and evaluated in the context of several dynamic tasks in which RoBat was moved at different velocities towards stationary echo sources such as walls and posts. Overall, the performance of the linear filterbank was more consistent than the gammatone. The same applies to the ANN, with consistently better noise performance than the weighted average. The effect of multiple reflectors contained in a single echo was also analysed in terms of error in Doppler-shift estimation assuming a single wider reflector. Inspired by the Doppler-shift compensation and obstacle avoidance behaviours found in CF-FM bats, a Doppler-based controller suitable for collision detection and convoy navigation in robots was devised and implemented in RoBat. The performance of the controller is satisfactory despite low Doppler-shift resolution caused by lower velocity of the robot when compared to real bats. Barshan’s and Kuc’s 2D object localisation method was implemented and adapted to the
منابع مشابه
Investigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)
This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملBiomimetic vibrissal sensing for robots.
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to ...
متن کاملA Comparison of Methods for Estimating Doppler-shift Using Bat-inspired Cochlear Filterbank Models
Doppler-shifts are a rich source of information not exploited by commercial ultrasonic range sensors for robots. Bats use Doppler-shifts for several tasks such as obstacle avoidance and prey capture, hence our motivation for incorporating the use of Doppler to mobile robot navigation. In this work we compare two different cochlear filterbank models (linear and gamma-tone) together with two meth...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کامل